# MikroORM

# Features

Currently, @tsed/mikro-orm allows you:

  • Configure one or more MikroORM instances via the @Configuration decorator. All databases will be initialized when the server starts during the server's OnInit phase.
  • Use the Entity MikroORM as Model for Controllers, AJV Validation and Swagger.

# Installation

To begin, install the MikroORM module for TS.ED:

    Once the installation process is completed, we can import the MikroOrmModule into the Server configuration:

    import {Configuration} from "@tsed/di";
    import {MikroOrmModule} from "@tsed/mikro-orm";
    
    @Configuration({
      imports: [MikroOrmModule],
      mikroOrm: [
        {
          contextName: 'default',
          type: 'postgresql',
          ...,
    
          entities: [
            `./entity/*{.ts,.js}`
          ]
        },
        {
          contextName: 'mongo',
          type: 'mongo',
          ...
        }
      ]
    })
    export class Server {}
    
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23

    The mikroOrm options accepts the same configuration object as init() from the MikroORM package. Check this page (opens new window) for the complete configuration documentation.

    # Obtain ORM instance

    @Orm decorator lets you retrieve an instance of MikroORM.

    import {Injectable, AfterRoutesInit} from "@tsed/common";
    import {Orm} from "@tsed/mikro-orm";
    import {MikroORM} from "@mikro-orm/core";
    
    @Injectable()
    export class UsersService {
      @Orm()
      private readonly orm!: MikroORM;
    
      async create(user: User): Promise<User> {
        // do something
        // ...
        // Then save
        await this.orm.em.persistAndFlush(user);
        console.log("Saved a new user with id: " + user.id);
    
        return user;
      }
    
      async find(): Promise<User[]> {
        const users = await this.orm.em.find(User, {});
        console.log("Loaded users: ", users);
    
        return users;
      }
    }
    
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26

    It's also possible to inject an ORM by its context name:

    import {Injectable} from "@tsed/di";
    
    @Injectable()
    export class MyService {
      @Orm("mongo")
      private readonly orm!: MikroORM;
    }
    
    1
    2
    3
    4
    5
    6
    7

    # Obtain EntityManager

    @EntityManager and @Em decorators lets you retrieve an instance of EntityManager.

    import {Injectable, AfterRoutesInit} from "@tsed/common";
    import {Em} from "@tsed/mikro-orm";
    import {EntityManager} from "@mikro-orm/mysql"; // Import EntityManager from your driver package or `@mikro-orm/knex`
    
    @Injectable()
    export class UsersService {
      @Em()
      private readonly em!: EntityManager;
    
      async create(user: User): Promise<User> {
        await this.em.persistAndFlush(user);
        console.log("Saved a new user with id: " + user.id);
    
        return user;
      }
    }
    
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16

    It's also possible to inject Entity manager by his context name:

    import {Injectable, AfterRoutesInit} from "@tsed/common";
    import {Em} from "@tsed/mikro-orm";
    import {EntityManager} from "@mikro-orm/mysql"; // Import EntityManager from your driver package or `@mikro-orm/knex`
    
    @Injectable()
    export class UsersService {
      @Em("contextName")
      private readonly em!: EntityManager;
    
      async create(user: User): Promise<User> {
        await this.em.persistAndFlush(user);
        console.log("Saved a new user with id: " + user.id);
    
        return user;
      }
    }
    
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16

    # Use Entity with Controller

    To begin, we need to define an Entity MikroORM like this and use Ts.ED Decorator to define the JSON Schema.

    import {Property, MaxLength, Required} from "@tsed/common";
    import {Entity, Property, PrimaryKey, Property as Column} from "@mikro-orm/core";
    
    @Entity()
    export class User {
      @PrimaryKey()
      @Property()
      id!: number;
    
      @Column()
      @MaxLength(100)
      @Required()
      firstName!: string;
    
      @Column()
      @MaxLength(100)
      @Required()
      lastName!: string;
    
      @Column()
      @Mininum(0)
      @Maximum(100)
      age!: number;
    }
    
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24

    Now, the model is correctly defined and can be used with a Controller (opens new window) , AJV validation, Swagger and MikroORM (opens new window).

    We can use this model with a Controller like that:

    import {Controller, Post, BodyParams, Inject, Post, Get} from "@tsed/common";
    
    @Controller("/users")
    export class UsersCtrl {
      @Inject()
      private readonly usersService!: UsersService;
    
      @Post("/")
      create(@BodyParams() user: User): Promise<User> {
        return this.usersService.create(user);
      }
    
      @Get("/")
      getList(): Promise<User[]> {
        return this.usersService.find();
      }
    }
    
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17

    # Transactions and Request context

    As mentioned in the docs (opens new window), we need to isolate a state for each request. That is handled automatically thanks to the AsyncLocalStorage registered via interceptor.

    We can use the @Transactional() decorator, which will register a new request context for your method and execute it inside the context.

    import {Controller, Post, BodyParams, Inject, Get} from "@tsed/common";
    import {Transactional} from "@tsed/mikro-orm";
    
    @Controller("/users")
    export class UsersCtrl {
      @Inject()
      private readonly usersService!: UsersService;
    
      @Post("/")
      @Transactional()
      create(@BodyParams() user: User): Promise<User> {
        return this.usersService.create(user);
      }
    
      @Get("/")
      getList(): Promise<User[]> {
        return this.usersService.find();
      }
    }
    
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19

    # Retry policy

    By default, IsolationLevel.READ_COMMITTED is used. You can override it, specifying the isolation level for the transaction by supplying it as the isolationLevel parameter in the @Transactional decorator:

    @Post("/")
    @Transactional({isolationLevel: IsolationLevel.SERIALIZABLE})
    create(@BodyParams() user: User): Promise<User> {
      return this.usersService.create(user);
    }
    
    1
    2
    3
    4
    5

    The MikroORM supports the standard isolation levels such as SERIALIZABLE or REPEATABLE READ, the full list of available options see here (opens new window).

    You can also set the flushing strategy (opens new window) for the transaction by setting the flushMode:

    @Post("/")
    @Transactional({flushMode: FlushMode.AUTO})
    create(@BodyParams() user: User): Promise<User> {
      return this.usersService.create(user);
    }
    
    1
    2
    3
    4
    5

    In some cases, you might need to avoid an explicit transaction, but preserve an async context to prevent the usage of the global identity map. For example, starting with v3.4, the MongoDB driver supports transactions. Yet, you have to use a replica set, otherwise, the driver will raise an exception.

    To prevent @Transactional() use of an explicit transaction, you just need to set the disabled field to true:

    @Post("/")
    @Transactional({disabled: true})
    create(@BodyParams() user: User): Promise<User> {
      return this.usersService.create(user);
    }
    
    1
    2
    3
    4
    5

    By default, the automatic retry policy is disabled. You can implement your own to match the business requirements and the nature of the failure. For some noncritical operations, it is better to fail as soon as possible rather than retry a coupe of times. For example, in an interactive web application, it is better to fail right after a smaller number of retries with only a short delay between retry attempts, and display a message to the user (for example, "please try again later").

    The @Transactional() decorator allows you to enable a retry policy for the particular resources. You just need to implement the RetryStrategy interface and use registerProvider() or @OverrideProvider() to register it in the IoC container. Below you can find an example to handle occurred optimistic locks based on an exponential backoff retry strategy (opens new window).

    import {OptimisticLockError} from "@mikro-orm/core";
    import {RetryStrategy} from "@tsed/mikro-orm";
    import {OverrideProvider} from "@tsed/di";
    import {setTimeout} from "timers/promises";
    
    @OverrideProvider(RetryStrategy)
    export class ExponentialBackoff implements RetryStrategy {
      private readonly maxDepth = 3;
      private depth = 0;
    
      public async acquire<T extends (...args: unknown[]) => unknown>(task: T): Promise<ReturnType<T>> {
        try {
          return (await task()) as ReturnType<T>;
        } catch (e) {
          if (this.shouldRetry(e as Error) && this.depth < this.options.maxDepth) {
            return this.retry(task);
          }
    
          throw e;
        }
      }
    
      private shouldRetry(error: Error): boolean {
        return error instanceof OptimisticLockError;
      }
    
      private async retry<T extends (...args: unknown[]) => unknown>(task: T): Promise<ReturnType<T>> {
        await setTimeout(2 ** this.depth * 50);
    
        this.depth += 1;
    
        return this.acquire(task);
      }
    }
    
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34

    ExponentialBackoff invokes passed function recursively is contained in a try/catch block. The method returns control to the interceptor if the call to the task function succeeds without throwing an exception. If the task method fails, the catch block examines the reason for the failure. If it's optimistic locking the code waits for a short delay before retrying the operation.

    Once a retry strategy is implemented, you can enable an automatic retry mechanism using the @Transactional decorator like that:

    import {Controller, Post, BodyParams, Inject, Get} from "@tsed/common";
    import {Transactional} from "@tsed/mikro-orm";
    
    @Controller("/users")
    export class UsersCtrl {
      @Inject()
      private readonly usersService!: UsersService;
    
      @Post("/")
      @Transactional({retry: true})
      create(@BodyParams() user: User): Promise<User> {
        return this.usersService.create(user);
      }
    
      @Get("/")
      getList(): Promise<User[]> {
        return this.usersService.find();
      }
    }
    
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19

    # Managing Lifecycle of Subscribers

    With Ts.ED, managing the lifecycle of subscribers registered with Mikro-ORM using the IoC container is simple. To automatically resolve a subscriber's dependencies, you can use the @Subscriber decorator as follows:

    import {EventSubscriber} from "@mikro-orm/core";
    import {Subscriber} from "@tsed/mikro-orm";
    
    @Subscriber()
    export class SomeSubscriber implements EventSubscriber {
      // ...
    }
    
    1
    2
    3
    4
    5
    6
    7

    In this example, we register the SomeSubscriber subscriber, which is automatically instantiated by the module using the IoC container, allowing you to easily manage the dependencies of your subscribers.

    You can also specify the context name for a subscriber to tie it to a particular instance of the ORM:

    import {EventSubscriber} from "@mikro-orm/core";
    import {Subscriber} from "@tsed/mikro-orm";
    
    @Subscriber({contextName: "mongodb"})
    export class SomeSubscriber implements EventSubscriber {
      // ...
    }
    
    1
    2
    3
    4
    5
    6
    7

    # Transaction Hooks

    The transaction hooks allow you to customize the default transaction behavior. These hooks enable you to execute custom code before and after committing data to the database. These transaction hooks provide a flexible way to extend the default transaction behavior and implement advanced patterns such as the Inbox pattern or domain event dispatching.

    # BeforeTransactionCommit Hook

    The BeforeTransactionCommit interface allows you to define hooks that are executed right before committing data to the database. This hook provides a way to modify data within the same transaction context and perform additional operations before the transaction is committed.

    To use the BeforeTransactionCommit hook, first, you have to implement the BeforeTransactionCommit interface:

    import {BeforeTransactionCommit} from "@tsed/mikro-orm";
    import {EntityManager} from "@mikro-orm/core";
    import {Injectable} from "@tsed/di";
    
    @Injectable()
    export class Hooks implements BeforeTransactionCommit {
      $beforeTransactionCommit(em: EntityManager): Promise<unknown> | unknown {
        // Custom code executed before committing data
      }
    }
    
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10

    Then just write your code inside the $beforeTransactionCommit method. This code will be executed before the transaction is committed.

    # AfterTransactionCommit Hook

    The AfterTransactionCommit interface allows you to define hooks that are executed right after committing data to the database. This hook enables you to execute code after the data is committed, making multiple transactions.

    To use the AfterTransactionCommit hook, you have to implement the AfterTransactionCommit interface:

    import {AfterTransactionCommit} from "@tsed/mikro-orm";
    import {EntityManager} from "@mikro-orm/core";
    import {Injectable} from "@tsed/di";
    
    @Injectable()
    export class Hooks implements AfterTransactionCommit {
      $afterTransactionCommit(em: EntityManager): Promise<unknown> | unknown {
        // Custom code executed after committing data
      }
    }
    
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10

    It's important to note that when using the AfterTransactionCommit hook, you need to handle eventual consistency and compensatory actions in case of failures on your own.

    # Author

      # Maintainers

        Last Updated: 9/9/2024, 7:14:58 AM

        Other topics